Genetic Variability of Species of the Genus *Eupelmus* Dalman, 1820 (Hymenoptera: Eupelmidae) Based on Allozyme Markers

*Miroslav Antov*1*, Ivan Stoyanov*2, Anelia Stojanova1 & Teodora Staykova2*

1Department of Zoology, Plovdiv University „Paisii Hilendarski”, 24 Tsar Assen Street, 4000 Plovdiv, Bulgaria; E-mails: miroslav-antov@mail.bg, stanelia@uni-plovdiv.bg
2Section of Genetics, Department of Developmental Biology, Plovdiv University „Paisii Hilendarski”, 24 Tsar Assen Street, 4000 Plovdiv, Bulgaria; E-mails: ivan100yanov@abv.bg, tstaykova@yahoo.com

Abstract: Four enzyme systems (MDH, ME, PGM and HK) of three parasitoid species of the genus *Eupelmus*, i.e. *E. vesicularis* (Retzius), *E. urozonus* Dalman and *E. microzonus* Förster were studied. A total of five populations were examined, three of them belonging to *E. urozonus*. Polymorphism of four alleles of MDH-1, PGM, HK-1 and HK-2 loci and three alleles of ME locus was observed. Taxonomic markers for the tested *Eupelmus* spp. were found. The degree of polymorphism and heterozygosity of each species were calculated. UPGMA cluster analysis confirmed that *E. vesicularis*, which belongs to the subgenus *Macroneura*, is discriminated from *E. urozonus* and *E. microzonus*, which belong to the subgenus *Eupelmus*. One of the populations of *E. urozonus* from Osogovo Mt. was more similar to a population from Vitosha Mt. than to another population from Osogovo Mt.

Key words: Hymenoptera, *Eupelmus*, genetic variability, allozymes

Introduction

Among the members of the superfamily Chalcidoidea (Hymenoptera), Eupelmidae is a relatively small family (Noyes 2016) composed of three subfamilies: Eupelminae Walker, Calosotinae Bouček and Neanastatiniae Kalina (Gibson et al. 1997). The genus *Eupelmus* Dalman, 1820 is the most diversified within the Eupelminae and includes 109 extant species in the Palearctic Region (Noyes 2016). Gibson (1995) recognised three subgenera within the genus *Eupelmus*: *Eupelmus*, Episolidelinae Girault, 1914 and *Macroneura* Walker, 1837. Species of *Eupelmus* are primary or secondary ectoparasitoids of immature stages of various holometabolous insects that are concealed or protected in plant tissue (Gibson 2011).

*Eupelmus* (*Eupelmus*) *urozonus* Dalman, 1820 is a cosmopolitan polyphagous species that develops as a primary and secondary parasitoid of a wide range of insect hosts (Bouček & Askew 1968, Thompson 1955). It is a part of a species group that includes morphologically similar species (Bouček 1988).

*Eupelmus* (*Eupelmus*) *microzonus* Förster, 1860 is a well known polyphagous parasitoid, with hosts belonging to twelve families of four insect orders; its plant associations comprise Asteraceae, Fabaceae, Fagaceae, Lamiaceae, Papaveraceae, Poaceae, Rosaceae and Zygophyllaceae (Noyes 2016).

*Eupelmus* (*Macroneura*) *vesicularis* (Retzius, 1783) is a widespread species characterised by unusually broad trophic links. Its hosts include various insect orders such as Coleoptera, Diptera, Hymenoptera, Lepidoptera, Orthoptera and Hemiptera (Gibson 1990).

Electrophoretic techniques offer a great capability to identify species using a variety of genetic
markers for diagnosing of insect parasitoids. They have been used to measure genetic variability in natural populations. Allozyme electrophoresis is a suitable tool that can be applied successfully in agriculture entomology to resolve many problems (Menken & Ulenberg 1987) including identification of pests and natural enemies, phylogenetic relationships, patterns of gene flow among populations, as well as for many other purposes (Menken 1990).

Isoenzyme and allozyme genetic variability in the Eupelmus parasitoids is poorly studied. Due to this fact, the aim of the present study was to characterise the genetic variability and differentiation among five Eupelmus populations from various locations in Bulgaria belonging to three Eupelmus species based on isoenzyme analysis.

### Materials and Methods

#### Eupelmus samples

More than 180 specimens of three different species from the genus Eupelmus were used for polyacrylamide gel electrophoresis (PAGE). The insects were reared from seeds and galls in laboratory conditions. Identification of the species was based on the keys by Askew & Nieves-Aldrey (2000), Gibson & Fusu (2016) and Kalina (1981). The specimens were aspirated with a pooter and anaesthetised with ethyl acetate and stored at −20°C prior to electrophoretic analysis. The examined populations of Eupelmus spp. and their collection dates, host-plants and localities are presented in Table 1.

<table>
<thead>
<tr>
<th>Population</th>
<th>Locality</th>
<th>GPS coordinates</th>
<th>Host-plants</th>
<th>Date of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. vesicularis</td>
<td>Ihtimanska Sredna Gora Mts., Verinsko Village</td>
<td>N 42°29'20.6&quot; E 23°45'52.5&quot;</td>
<td>Rosa sp.</td>
<td>22.02.2016</td>
</tr>
<tr>
<td>E. microzonus</td>
<td>Veliko Tarnovo, Arbanasi Village</td>
<td>N 43°05'50.1&quot; E 25°40'38.3&quot;</td>
<td>Dianthus giganteus</td>
<td>01.08.2015</td>
</tr>
<tr>
<td>E. urozonus</td>
<td>Osogovo Mts., Granitsa Village</td>
<td>N 42°15'30.0&quot; E 22°44'26.2&quot;</td>
<td>Rosa sp.</td>
<td>04.03.2016</td>
</tr>
<tr>
<td></td>
<td>Osogovo Mts., Eremiya Village</td>
<td>N 42°13'09.6&quot; E 22°50'06.0&quot;</td>
<td>Rosa sp.</td>
<td>05.03.2016</td>
</tr>
<tr>
<td></td>
<td>Vitosha Mts., Marchaevo Village</td>
<td>N 42°36'58.0&quot; E 23°10'53.6&quot;</td>
<td>Rosa sp.</td>
<td>20.03.2016</td>
</tr>
</tbody>
</table>

### Enzyme electrophoresis

The whole body of each specimen was squashed using quartz sand in 0.8 M tris−phosphate buffer at pH=6.7, and laid for extraction for 18 hours at 4°C. Then the homogenates were centrifuged for 15 minutes at 5000 rpm and 10μl of the supernatant were syringed into wells in the gel. The electrophoretic separation was carried out according to the technique described by Davis (1964) and Maurer (1971) using 7.5% polyacrylamide vertical gel at 4.5 mA/cm for 3 hours, together with concentrating gels (3.3%) at pH=6.7, and 0.05 M tris−0.2 M glycine electrode buffer at pH=8.3. The following enzymes were manifested: malate dehydrogenase (MDH – EC 1.1.1.37), malic enzyme (ME – EC 1.1.1.40), phosphoglucomutase (PGM – EC 5.4.2.2) and hexokinase (HK – EC 2.7.1.1). Buffers and histochemical staining for each enzyme were as in Shaw & Prasad (1970) and Spencer et al. (1964).

### Statistical analysis

After the detection of the isoenzyme activity regions, the phenotypes of the discovered loci were recorded. Allele frequencies, mean number of alleles per locus, proportion of polymorphic loci, observed (H_o) and expected (H_e) heterozygosity, deviation from the Hardy-Weinberg equilibrium and Nei’s genetic distance (D) (Nei 1972) were calculated using BIOSYS-1 (Swofford & Selander 1981). A phylogenetic tree was constructed using Nei’s (1972) genetic distance by UPGMA (Neathe & Sokal 1973) method using the PHYLIP (Felsenstein 1993) software package.

### Results

Four enzymes (malate dehydrogenase, malic enzyme, phosphoglucosemutase and hexokinase) corresponding to five loci (MDH-1, ME, PGM, HK-1 and HK-2) produced clear bands which were used for a detailed study. Most of the studied loci were polymorphic in most of the populations included in this investigation (Table 2). Polymorphism with total of four alleles of MDH-1 locus was detected in the studied species (Table 2). One species, E. vesicularis, showed a unique fixed allele of MDH-1 locus.
Genetic Variability of Species of the Genus *Eupelmus*

MDH-1<sup>100</sup>, MDH-1<sup>84</sup> and MDH-1<sup>78</sup> alleles were present in both of *E. urozonus* and *E. microzonus*. In *E. urozonus* population from Eremiya Village the MDH-1<sup>100</sup> allele was recorded with the highest frequency (0.194). The MDH-1<sup>84</sup> allele was detected with the highest frequency in *E. microzonus* (0.658). The MDH-1<sup>78</sup> allele was the most common in the all *E. urozonus* populations. This allele demonstrated the highest frequency in the population from Granitsa Village (0.836). The Mdh-1<sup>59</sup> allele only occurred in *E. vesicularis* (1.000).

Polymorphism with three alleles was observed in the ME locus. The ME<sup>136</sup> allele occurred in *E. microzonus* (0.059) and *E. urozonus* populations from Eremiya Village (0.125) only (Table 2). ME<sup>100</sup> was the most common allele in all tested populations of the studied species. It demonstrated the highest frequency in *E. microzonus* (0.941). Among the populations of *E. urozonus*, this allele was with the highest frequency in population from Granitsa Village (0.923) and with the lowest in population from Eremiya Village (0.594). The ME<sup>77</sup> allele was detected in the *E. urozonus* and *E. vesicularis* populations but absent in *E. microzonus* one. With the highest frequency this allele occurred in *E. vesicularis* (0.313).

Polymorphism with four alleles was observed in the PGM locus (Table 2). The PGM<sup>123</sup> allele was specific for *E. vesicularis* (1.000). The other three alleles were typical for *E. urozonus* and *E. microzonus*. The PGM<sup>100</sup> allele was the rarest in the gene pool of all populations where it existed. The PGM<sup>85</sup> allele demonstrated the highest frequency in *E. microzonus* population (0.636). The PGM<sup>75</sup> allele was the most common in all populations of *E. urozonus*, with the highest frequency in population from Marchaevo Village (0.847).

Polymorphism with four alleles was observed in both of HK-1 and HK-2 loci (Table 2). The HK-1<sup>127</sup> allele was specific for *E. microzonus* (1.000). HK-1<sup>114</sup> occurred only in the populations of *E. urozonus* from Eremiya and Marchaevo Village (0.444 and 0.028). The HK-1<sup>108</sup> allele was specific for *E. vesicularis* (1.000). HK-1<sup>100</sup> was specific for *E. uro-

### Table 2. Allele frequencies at enzyme loci in *Eupelmus* populations tested

<table>
<thead>
<tr>
<th>Locus/allele</th>
<th><em>Eupelmus urozonus</em> Eremiya</th>
<th><em>Eupelmus urozonus</em> Marchaevo</th>
<th><em>Eupelmus urozonus</em> Granitsa</th>
<th><em>Eupelmus vesicularis</em> Verinsko</th>
<th><em>Eupelmus microzonus</em> Arbanasi</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MDH-1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDH-1&lt;sup&gt;100&lt;/sup&gt;</td>
<td>0.194</td>
<td>0.024</td>
<td>0.014</td>
<td>0.000</td>
<td>0.079</td>
</tr>
<tr>
<td>MDH-1&lt;sup&gt;84&lt;/sup&gt;</td>
<td>0.056</td>
<td>0.427</td>
<td>0.151</td>
<td>0.000</td>
<td>0.658</td>
</tr>
<tr>
<td>MDH-1&lt;sup&gt;78&lt;/sup&gt;</td>
<td>0.750</td>
<td>0.548</td>
<td>0.836</td>
<td>0.000</td>
<td>0.263</td>
</tr>
<tr>
<td>MDH-1&lt;sup&gt;59&lt;/sup&gt;</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td><strong>ME</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME&lt;sup&gt;136&lt;/sup&gt;</td>
<td>0.125</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.059</td>
</tr>
<tr>
<td>ME&lt;sup&gt;100&lt;/sup&gt;</td>
<td>0.594</td>
<td>0.909</td>
<td>0.923</td>
<td>0.688</td>
<td>0.941</td>
</tr>
<tr>
<td>ME&lt;sup&gt;77&lt;/sup&gt;</td>
<td>0.281</td>
<td>0.091</td>
<td>0.077</td>
<td>0.313</td>
<td>0.000</td>
</tr>
<tr>
<td><strong>PGM</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM&lt;sup&gt;123&lt;/sup&gt;</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>PGM&lt;sup&gt;100&lt;/sup&gt;</td>
<td>0.067</td>
<td>0.010</td>
<td>0.024</td>
<td>0.000</td>
<td>0.091</td>
</tr>
<tr>
<td>PGM&lt;sup&gt;85&lt;/sup&gt;</td>
<td>0.267</td>
<td>0.143</td>
<td>0.175</td>
<td>0.000</td>
<td>0.636</td>
</tr>
<tr>
<td>PGM&lt;sup&gt;75&lt;/sup&gt;</td>
<td>0.667</td>
<td>0.847</td>
<td>0.802</td>
<td>0.000</td>
<td>0.273</td>
</tr>
<tr>
<td><strong>HK-1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK-1&lt;sup&gt;127&lt;/sup&gt;</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>HK-1&lt;sup&gt;114&lt;/sup&gt;</td>
<td>0.444</td>
<td>0.028</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>HK-1&lt;sup&gt;108&lt;/sup&gt;</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>HK-1&lt;sup&gt;100&lt;/sup&gt;</td>
<td>0.556</td>
<td>0.972</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td><strong>HK-2</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK-2&lt;sup&gt;137&lt;/sup&gt;</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>HK-2&lt;sup&gt;114&lt;/sup&gt;</td>
<td>0.364</td>
<td>0.028</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>HK-2&lt;sup&gt;108&lt;/sup&gt;</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>HK-2&lt;sup&gt;100&lt;/sup&gt;</td>
<td>0.636</td>
<td>0.972</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
This allele was fixed in the gene pool of a population from Granitsa Village (1.000).

The HK-2137 allele was specific for E. microzonus (1.000). HK-2125 was presented only in the gene pool of E. urozonus populations from Eremiya and Marchaevo Village (0.364 and 0.028). HK-2116 was unique for E. vesicularis (1.000). HK-2100 occurred in the gene pool of all E. urozonus populations, with the highest frequency in population from Granitsa Village where it was fixed (1.000) (Table 2).

The mean number of alleles per locus varied from 1.2 (in E. vesicularis) to 2.6 (in E. urozonus from Eremiya Village) (Table 3). The percent of polymorphic loci was as follows: 20% (for E. vesicularis); 60% (for E. microzonus, E. urozonus from Granitsa and Marchaevo Village) and 100% (for E. urozonus from Eremiya Village) according to 0.99 criterion. The observed heterozygosity (H_o) ranged from 0.018 (E. urozonus from Marchaevo Village) to 0.055 (E. microzonus) and the expected heterozygosity (H_e) ranged from 0.092 (E. vesicularis from Eremiya Village) to 0.497 (E. urozonus from Eremiya Village) (Table 3). There were significant deviations of genotype frequencies from Hardy-Weinberg expectations in almost all loci of the tested populations, except the Me locus in E. microzonus and E. vesicularis. Chi-Square (df = 3) test showed that the deviations were in result of excess of homozygotes and deficiency of heterozygotes.

The values of the genetic distance (Nei 1972) were calculated using the allele frequencies and ranged from 0.020 (between E. urozonus from Marchaevo and E. urozonus from Granitsa Village) to 1.941 (between E. urozonus from Eremiya and E. vesicularis) (Table 4). The resulting UPGMA dendrogram (Sneath & Sokal 1973) separated the Eupelmus species into 2 distinct clusters. E. urozonus and E. microzonus formed one cluster with two separate subclus-

---

**Table 3.** Mean number of alleles per locus, proportion of polymorphic loci, observed (H_o) and expected heterozygosity (H_e)

<table>
<thead>
<tr>
<th>Population of Eupelmus</th>
<th>Mean no. of alleles per locus</th>
<th>Percent polymorphic loci (P = 0.99)</th>
<th>H_o</th>
<th>H_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. urozonus Eremiya</td>
<td>2.6±0.2</td>
<td>100.0</td>
<td>0.046±0.033</td>
<td>0.497±0.027</td>
</tr>
<tr>
<td>E. urozonus Marchaevo</td>
<td>2.4±0.2</td>
<td>60.0</td>
<td>0.018±0.008</td>
<td>0.212±0.086</td>
</tr>
<tr>
<td>E. urozonus Granitsa</td>
<td>2.0±0.4</td>
<td>60.0</td>
<td>0.021±0.011</td>
<td>0.151±0.069</td>
</tr>
<tr>
<td>E. vesicularis Verinsko</td>
<td>1.2±0.2</td>
<td>20.0</td>
<td>0.025±0.025</td>
<td>0.092±0.092</td>
</tr>
<tr>
<td>E. microzonus Arbanasi</td>
<td>2.0±0.4</td>
<td>60.0</td>
<td>0.055±0.034</td>
<td>0.231±0.120</td>
</tr>
</tbody>
</table>

---

**Table 4.** Nei’s (1972) genetic distance between the examined populations of Eupelmus based on allozymes

<table>
<thead>
<tr>
<th>Population</th>
<th>Eupelmus microzonus</th>
<th>Eupelmus vesicularis</th>
<th>E. urozonus Granitsa</th>
<th>E. urozonus Marchaevo</th>
<th>E. urozonus Eremiya</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. microzonus *********</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. vesicularis 1.874</td>
<td>*********</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. urozonus Granitsa 0.983</td>
<td>1.901</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. urozonus Marchaevo 0.892</td>
<td>1.872</td>
<td></td>
<td>0.020</td>
<td>*********</td>
<td></td>
</tr>
<tr>
<td>E. urozonus Eremiya 1.006</td>
<td>1.941</td>
<td>0.112</td>
<td>0.141</td>
<td>*********</td>
<td></td>
</tr>
</tbody>
</table>

---

Fig. 1. UPGMA dendrogram of the studied populations of Eupelmus based on Nei’s (1972) genetic distance

The values of the genetic distance (Nei 1972) were calculated using the allele frequencies and ranged from 0.020 (between E. urozonus from Marchaevo and E. urozonus from Granitsa Village) to 1.941 (between E. urozonus from Eremiya and E. vesicularis) (Table 4). The resulting UPGMA dendrogram (Sneath & Sokal 1973) separated the Eupelmus species into 2 distinct clusters. E. urozonus and E. microzonus formed one cluster with two separate subclus-
Eupelmus that this enzyme system is appropriate for studying phoresis to determine their ability to discriminate several species of Trichogramma (Chalcidoidea: Trichogrammatidae). He ascertained that MDH and SOD are not appropriate markers for species diagnosis unlike EST. Our results about MDH pointed to E. vesicularis and E. sipes – formed the second cluster. E. urozonus population from Granitsa Village was more similar with E. urozonus population from Marchaev Village than the same of Eremiya Village (Figure 1).

**Discussion**

The results obtained in this study indicate that MDH, ME, PGM and HK isozyme markers could be applied to explore the genetic variability and to provide reliable biochemical characters for discriminating among Eupelmus species. Pintureau (1993) examined three enzyme systems (EST, MDH and SOD) by electrophoresis to determine their ability to discriminate several species of Trichogramma (Chalcidoidea: Trichogrammatidae). He ascertained that MDH and SOD are not appropriate markers for species diagnosis unlike EST. Our results about MDH pointed that this enzyme system is appropriate for studying Eupelmus genetic diversity. Fusu (2010) observed distinct polymorphism of ME locus with four alleles as well as polymorphism of PGM locus, with three alleles and monomorphism of MDH-1 and MDH-2 loci in E. vesicularis by means of cellulose acetate electrophoresis. In our study, MDH-1 locus showed clear polymorphism among the studied species from Bulgaria with diagnostic allele MDH-1\(^{59}\) for E. vesicularis. ME, PGM, HK-1 and HK-2 loci were also found to be polymorphic. ME and PGM loci in our investigation correspond to ME and PGM loci described by Fusu (2010). PGM\(^{123}\), HK-1\(^{108}\) and HK-2\(^{110}\) alleles found in this study were specific for E. vesicularis. HK-1\(^{127}\) and HK-2\(^{113}\) alleles were specific for E. microzonus. The allele frequencies for all loci showed considerable differences among the populations from three species.

The expected heterozygosity was higher than the observed one as well as higher than the values calculated by other authors for populations of other wasp species (Metcalf et al. 1975, Pamilio et al. 1978a, Lester & Selander 1979, Menken 1982, Unruh et al. 1986, Roux & Roques 1996). Relatively high value of expected heterozygosity can be explained by the solitary lifestyle of Eupelmus spp. and the development of their larvae in various habitats (stems, galls, seeds) in contrast to some social insects, whose larvae develop in environmentally buffered nests.

The observed heterozygosity for all populations in our study is less than the value of observed heterozygosity in Neotropical sawfly Digelasmus diversipes (0.094± 0.025) (Kirby, 1882) (Hymenoptera: Symplyta: Argidae) (Boraschi & Del Lama 2004). According to Menken (1991), Hymenoptera harboured low levels of genetic variability and show approximately a third of the level of heterozygosity of diploid-diploid insects (Berkerhamer 1983, Graur 1985, Unruh et al. 1986) except sawflies (Sheppard & Heydon 1986, Woods & Guttmann 1987, Boato & Battisti 1996, Boraschi & Del Lama 2004, Rosenmeier & Pack 1993).

The low levels of genetic variability in Hymenoptera are not a surprising phenomenon. A number of authors have reported results showing lower values of mean heterozygosity in the Hymenoptera compared to other insect orders (Snyder 1974, Metcalf et al. 1975, Pamilio et al. 1978a, Lester & Selander 1979, Menken 1982, Berkerhamer 1983, Graur 1985, Roux & Roques 1996).


The lower value of observed heterozygosity in all Eupelmus populations tested could be explained by the haplodiploidy, genetic bottlenecks (Menken 1991), effective population size (Pamilio et al. 1978a) and the likelihood of inbreeding (Hamilton 1967).

All Hymenoptera have a haplodiploid mechanism of reproduction that involves two types of parthenogenesis according to the sex of the offspring. Arrhenotoky is the dominant mode of reproduction in which males develop from unfertilized eggs and are haploid and females develop from fertilized eggs and are diploid. In contrast to arrhenotoky, thletyko-ous parthenogenesis occurs less frequently and represents a mode of asexual reproduction in which diploid females are produced from unfertilized eggs and males are absent. Thletyko in Hymenoptera can be induced by nuclear genes or by infection with symbiotic microorganisms and includes two genetically based forms (automictic and apomictic thlytoky) and endosymbiont-induced form (Heimpel & De Boer 2008, Leach et al. 2009).

The presence of male specimens in both E. urozonus and E. microzonus show that they reproduce by arrhenotoky. E. vesicularis males are unknown from North America (Gibson 1990) and in Europe even if males exist they are rarely collected and the species reproduces by thletykoous parthenogenesis (Fusu 2010). According to Rabeling & Kronauer (2013), arrhenotokous females have meiotic oog- enesis that enables the production of offspring with combinations of traits differing from those of either parent. In contrast, thletykoous females reproduce
by automixis leading to an irreversible increase of homozygosity in populations.

An important factor limiting the amount of genetic variation is the genetic bottleneck (Menken 1991) whose effects last for long periods in many generations (Nei et al. 1975). Lester & Selander (1979) gave a typical example with the parasitic wasp Diachasmimorpha juglandis (Muesebeck, 1961), that may survive periodic bottlenecks. The occurrence of such events could lead to a reduction of the population size resulting into the arise of favourable conditions for inbreeding. One of the reasons explaining the observed monomorphism in two species of stingless bees (Wagner & Briscoe 1983) is inbreeding.

Pamilo et al. (1978a) noted the significant role of effective population size as an important factor affecting the amount of genetic variation. According to Lester & Selander (1979), a smaller effective population size and a shorter time for fixation of new mutants have haplodiploid populations than diploid populations.

Conclusions

This paper presents information concerning genetic diversity of Eupelmus. Species of the subgenera Eupelmus and Macroneura were clearly distinguishable at the MDH-1, ME, PGM, HK-1 and HK-2 loci. The MDH-150, PGM123, HK-1108 and HK-2116 alleles were absent from the gene pool of the species of the subgenus Eupelmus (E. urozonus and E. microzonus) and could be used as taxonomic markers for determination of E. vesicularis. HK-1127 and HK-2137 were key alleles for discrimination and characterization of E. microzonus. The values of the genetic distance (Nei 1972) and the branches of the dendrogram clearly confirmed the genetic differentiation among the studied populations of the studied species of Eupelmus.

Further studies including more species and an increased number of analysed loci will be helpful to clarify some questions at both inter- and intraspecific levels of genetic heterogeneity for Eupelmus species.

Acknowledgements: We are grateful to Dr G. Gibson (Agriculture and Agri-Food, Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa), Dr R. C. Berkelhamer (University of California, Berkeley), Dr T. R. Unruh (US Department of Agriculture, ARS, Wapato, WA), Dr D. Graur (University of Houston) and Professor Dr S. Menken (Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam) for providing literature. We thank T. Stoyanova (University of Strathclyde, IBioIC, Glasgow) for linguistic improvements of the text. This work was supported by the Fund for Scientific Research, Plovdiv University, Grant MU 15-BF-013.

References


Felzenstein J. 1993. PHYLP (Phylogeny Inference Package), Version 3.5C Distributed by the author. Department of Genetics, University of Washington, Seattle, WA.


PAMILO P., VÄRVIÖ-AHIO S.–L. & PEKKARINEN A. 1978a. Low en-


RAEBLING C. & KRONAUER D. J. C. 2013. Thelytokous parthen-


ROSENMEIER L. & PACKER L. 1993. A comparison of genetic varia-


SHAW C. R. & PRASAD R. 1970. Starchgel electrophoresis of enzy-


SNYDER T. P. 1974. Lack of allozymic variability in three bee spe-


SPENCER N., HOPKINSON D. & HARRIS H. 1964. Phosphogluco-


SWOFFORD D. L. & SELANDER R. B. 1981. BIOSYS-1: A computer program for the analysis of allelic variation in genetics Rel.1.0 Department of Genetics and Development University of Illinois at Urbana-Champaign. Urbana, Illinois 60801, USA.


UNRUH T. R., WHITE W., GONZALEZ D. & LUCK R. F. 1986. Electro-


WOODS P. E. & GUTTMAN S. I. 1987. Genetic variation in Neo-

diprion (Hymenoptera: Symphyta: Diprionidae) sawflies and a comment on low levels of genetic diversity within the Hymenoptera. Annals of the Entomological Society of America, 80: 590-599.