A review of the Genus *Hygrocrates* with a Description of a New Species from Turkey (Araneae: Dysderidae)

Kadir Boğaç Kunt¹, Yuri M. Marusik², Mikhail M. Omelko³,⁴

¹ Poligon Sitesi 71/27-B TR-06810 Dodurga, Çayyolu, Ankara, Turkey; E-mail: chaetopelma@gmail.com
² Institute for Biological Problems of the North RAS, Portovaya Str. 18, Magadan, Russia.
³ Far Eastern Federal University, Sukhanova, 8, Vladivostok 690950 Russia and Gornotaezhnaya Station FEB.
⁴ RAS, Gornotaezhnoe Vil., Ussuriyski Dist., Primorski Krai 692533 Russia.

Abstract: A new species, *Hygrocrates kovblyuki* Kunt & Marusik sp. n., is described on the basis of both sexes from the Marmara region of Turkey. Detailed morphological descriptions, diagnosis and figures of the copulatory organs of the new species are provided, in addition to a key to both males and females of all *Hygrocrates* species.

Key Words: Dysderinae, Georgia, *Hygrocrates caucasicus*, Marmara region, spider

Introduction

The genus *Hygrocrates* was erected by Deeleman-Reinhold in 1988 (Deeleman-Reinhold, Deeleman 1988), with the type species as *Harpactocrates lycaoniae* Brignoli, 1978. The genus *Hygrocrates* presently contains four species. Two species are known in Turkey: *H. lycaoniae* (Brignoli, 1978) and *H. deelemanus* Kunt & Yağmur, 2011 (Brignoli 1978, Deeleman-Reinhold, Deeleman 1988, Kunt et al. 2011). Recently, Kunt et al. (2011) clarified the taxonomic status of the Turkish *Hygrocrates* species and described *H. deelemanus* from Turkey.

During our field trips in 2011, we collected some *Hygrocrates* specimens in the Marmara region of Turkey and these specimens were identified as belonging to a new species. We provide the description of this new species and compare it to other *Hygrocrates* species that occur in Turkey and Georgia.

Material and Methods

All specimens were collected from the Bilecik Province of Turkey (Fig. 1). The specimens were collected by sifting leaf litter and were preserved in 70% ethanol. Digital images of the pedipalp and vulva were taken either with a Leica DFC295 digital camera attached to a Leica S8AP0 stereomicroscope or an Olympus Camedia E-520 camera attached to an Olympus SZX16 stereomicroscope. Five to 30 photographs were taken in different focal planes and combined using “CombineZP” image stacking software. Photographic images were edited using Photoshop CS2 and CorelDraw X3 was used to create the plates. All measurements are in mm. Terminology for the body measurements and copulatory organ structures follows Deeleman-Reinhold, Deeleman (1988), Chatzaki, Arnedo (2006) and Kunt et al. (2011).

The material treated herein is deposited in the Anadolu University Zoological Museum (AUZM, Eskişehir, Turkey). Abbreviations: AL, abdominal length; CL, carapace length; CWmax, maximum carapace width; CWmin, minimum carapace width; AME, anterior median eyes; PLE, posterior lateral eyes; PME, posterior median eyes; AMEd, diameter of anterior median eyes; PLEd, diameter of posteri-
or lateral eyes; PMEd, diameter of posterior median eyes; ChF, length of cheliceral fang; ChG, length of cheliceral groove; ChL, total length of chelicera (lateral external view); Ta, tarsus; Me, metatarsus, Ti, tibia; Pa, patella; Fe, femur; Tr, trochanter; C, coxa; D, dorsal; Pl, prolateral; Rl, retrolateral; V, ventral.

Key to the Hygrocrates species

1. Male ...2
 - Female ...4

2. Bulbus straight, cylindrical; embolus lobe-shaped; apophysis, and apophysis, nearly same size. Tip of apophysis is obtuse (Figs 17-21)
 - Bulbus pyriform; embolus hook-shaped; apophysis, and apophysis, smaller than embolus........3
 - Bulbus pyriform; embolus beak-shaped; apophysis, and apophysis, consist of two parts (Figs 2-5, 10, 13)

3. Transition between bulbus and distal continuation is gradual (Fig. 9)........H. lycaoniae
 - Transition between bulbus and distal continuation is abrupt, clearly curved over 90° (Fig. 8)

4. Distalmost part of spermathecae linear
 - Distalmost part of spermathecae triangular (Figs 6-7, 16)........H. kovblyuki sp. n.
 - Distalmost part of spermathecae oval5

5. Proxialmost part of spermathecae oval (Fig. 14)
 - Proxialmost part of spermathecae circular (Fig. 15)

6. Proxialmost part of spermathecae oval (Fig. 15)

Taxonomy

Hygrocrates DEELEMAN-REINHOLD, 1988

Diagnosis: Hygrocrates taxonomically most closely related to Harpactocrates Simon, 1914, but it differs in having posterior median eyes closer to each other and anterior cheliceral teeth smaller in the basal region. Moreover, the presence of subapical apophysis in male palp and two parts (distalmost and proximalmost parts) of spermathecae of female vulvae are characteristics of the genus.

Comments: Accounting the new species, the genus comprises five species distributed in the East Mediterranean: three species in Turkey (H. deelemanus, H. kovblyuki sp. n., H. lycaoniae) and two species in the West Caucasus (H. caucasicus, H. georgicus). It is possible that species described on the basis of opposite sexes from the Caucasus are conspecific.

Hygrocrates kovblyuki KUNT & MARUSIK sp. n. Fig. 2-7

Material Examined: Holotype ♂ (AUZM), Turkey, Bilecik Province, Bozüyük District, c. 4 km E of Aksutekke Village, Mezit 11 [39°55'13.48"N; 29°46'35.35"E], 731 m, leaf litter in Fagus forest, 23.IX.2010, leg. Y.M. Marusik. Paratypes 2 ♀♀ (AUZM) same data as holotype.

Diagnosis: Hygrocrates kovblyuki sp. n. is closely related to H. deelemanus and H. lycaoniae. The male and female of H. kovblyuki sp. n. can be separated from all other Hygrocrates species by the following characteristics:

1. The angle between the embolus and apophysis is narrower than in H. deelemanus and H. lycaoniae in the lateral view (see KUNT et al. 2011).

2. Apophysis consists of two tips that originate from a broad base. One of the tips runs forward to the embolus, while the other is oriented towards the tegulum.

3. The transverse bar in the epigyne is turned towards the spermathecae on both sides and the dorsal arch is much more strongly sclerotized than in H. deelemanus and H. lycaoniae.

Derivatio nominis: The new species is dedicated to the Ukrainian arachnologist Mykola M. Kovblyuk (Simferopol, Ukraine) who is a respected friend of the authors.

Measurements (Holotype ♂ / Paratypes ♀♀):

<table>
<thead>
<tr>
<th>Character</th>
<th>Holotype</th>
<th>Paratypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>3.30 / 4.40</td>
<td>CL 2.90 / 3.20</td>
</tr>
<tr>
<td>CWmax</td>
<td>2.45 / 3.70</td>
<td>CWmin 1.55 / 1.80</td>
</tr>
<tr>
<td>AMEd</td>
<td>0.11 / 0.12</td>
<td>PMEd 0.11 / 0.12</td>
</tr>
<tr>
<td>PLEd</td>
<td>0.14 / 0.15</td>
<td>ChF 0.75 / 0.80</td>
</tr>
<tr>
<td>PMEd</td>
<td>0.50 / 0.62</td>
<td>ChG 0.50 / 0.62</td>
</tr>
<tr>
<td>ChL</td>
<td>1.45 / 1.68</td>
<td></td>
</tr>
</tbody>
</table>

Description: Carapace hexagonal-shaped, reddish brown. Fovea distinct and linear. Cephalic region darker than thoracic region. Labium, gnatho-oxae and chelicerae brown. The body color of the male distinctly darker than the female. AME, PLE and PME closely grouped. Distance of AME-PLE shorter than PLE-PME. AME separated. Cheliceral groove with four teeth: retromargin with four teeth, including one small and one large tooth at the base of the groove. Leg length formula: Leg I > Leg IV > Leg II > Leg III. Tarsi with two claws and claw tufts. All tarsi with fine tarsal scopulae. Legs III and IV
with metatarsal scopulae. Coxae without spines. Leg measurements and details of leg spination are given in Table 1 and Table 2, respectively.

Palp with pyriform bulbus. The transition between the bulbus and the distal continuation is distinct. Embolus beak-shaped, wide at the base and tapering towards the tip. The tip of the embolus is slightly sclerotized. Apophysis$_a$ is about as long as the embolus and the angle between them is approximately 45-50°. The tip of apophysis$_a$ is more strongly sclerotized than the embolus; tips of apophysis$_a$ and embolus point in opposite directions. Apophysis$_b$ originates at the base of the bulb and is located above the embolus and apophysis$_a$. Apophysis$_b$ has two parts: apophysis$_{b1}$ and apophysis$_{b2}$. Apophysis$_{b1}$ cylindrical, beak-shaped apically and strongly sclerotized. Apophysis$_{b2}$ is triangular and spine-shaped. There are spine-shaped thin and weak structures between the embolus and apophysis$_{b2}$.

Spermathecae have two parts: referred to here as the distalmost and proximalmost regions. Distalmost region is triangular in shape whereas the proximalmost part is pentagonal in shape. Proximalmost part of the spermathecae, dorsal arch and transverse bar

Table 1. Leg measurements of *Hygrocrates kovblyuki* sp. n.

<table>
<thead>
<tr>
<th>Holotype ♀/ Paratypes ♂♂</th>
<th>Fe</th>
<th>Pa</th>
<th>Ti</th>
<th>Me</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leg I</td>
<td>2.35 / 2.50</td>
<td>1.60 / 1.75</td>
<td>1.95 / 1.95</td>
<td>1.50 / 1.86</td>
<td>0.55 / 0.55</td>
</tr>
<tr>
<td>Leg II</td>
<td>2.05 / 2.05</td>
<td>1.45 / 1.60</td>
<td>1.55 / 1.71</td>
<td>1.50 / 1.82</td>
<td>0.45 / 0.45</td>
</tr>
<tr>
<td>Leg III</td>
<td>1.75 / 1.80</td>
<td>0.95 / 1.05</td>
<td>1.10 / 1.25</td>
<td>1.35 / 1.75</td>
<td>0.45 / 0.45</td>
</tr>
<tr>
<td>Leg IV</td>
<td>2.05 / 2.10</td>
<td>1.25 / 1.50</td>
<td>1.65 / 1.93</td>
<td>1.70 / 2.40</td>
<td>0.55 / 0.55</td>
</tr>
</tbody>
</table>

Table 2. Leg spination of *Hygrocrates kovblyuki* sp. n.

<table>
<thead>
<tr>
<th>♂ (Holotype)</th>
<th>Leg I</th>
<th>Leg II</th>
<th>Leg III</th>
<th>Leg IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>2 pl</td>
<td>1 pl</td>
<td>0</td>
<td>2, 2 D</td>
</tr>
<tr>
<td>Ti</td>
<td>0</td>
<td>0</td>
<td>1 pl 1, 2 rl 1, 2 V</td>
<td>1, 2, 2 pl 1, 1 rl 1, 2 V</td>
</tr>
<tr>
<td>Me</td>
<td>0</td>
<td>0</td>
<td>1, 1 pl 6 rl 2, 2 V</td>
<td>4 pl 5 rl 2, 2 V</td>
</tr>
</tbody>
</table>

♀ (Paratype) | Leg I | Leg II | Leg III | Leg IV |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>2 pl</td>
<td>1 pl</td>
<td>0</td>
<td>2, 1 D</td>
</tr>
<tr>
<td>Ti</td>
<td>0</td>
<td>0</td>
<td>1 pl 1, 2 rl 1, 2 V</td>
<td>2, 2 pl 2, 1 rl 1, 2 V</td>
</tr>
<tr>
<td>Me</td>
<td>0</td>
<td>0</td>
<td>1, 1 pl 1, 1 rl 1 V</td>
<td>4 pl, 5 rl, 2, 2 V</td>
</tr>
</tbody>
</table>
Kunt K. B., Y. M. Marusik, M. M. Omelko

are strongly sclerotized. Dorsal arch is as wide as the transverse bar.

Habitat and distribution: *H. kovblyuki* sp. n. is known from the type locality only. The vegetation at the type locality consists of mixed humid forest composed of *Fagus orientalis*, *Abies nordmanniana* ssp. *bornmuelleriana* and *Pinus sylvestris*.

Remarks

The structure of the copulatory organs of *H. kovblyuki* sp. n. is similar to the other Turkish members of the genus, *H. lycaoniae* and *H. deelemanus*. Males of the new species can be easily distinguished from the others by the shape of apophysis b, which is divided into two parts (Figs 8-13). Also, the spermathecae have two parts (Figs 14-16). The Caucasian species, *H. caucasicus* Dünin, 1992 and *H. georgicus*, were originally described from Georgia. *H. caucasicus* was described based only on the male and *H. georgicus* (Mcheidze, 1972) was described based only on the female. The other sexes are still unknown for both species. The male palp of *H. caucasicus* is characterized by a straight and cylindrical bulbus, a lobe-shaped embolus and a finger-shaped apophysis b (Figs 17-21). However, because of insufficient information, the taxonomic status of *H. georgicus* remains unclear (see Kunt et al. 2011). But, based on current data, *H. georgicus* can be distinguished from the Turkish members of the genus by the linear distalmost part of the spermathecae. Thus, two different groups (Anatolian and Caucasian groups) can be distinguished within the genus *Hygrocrates* based on differences in the structure of their genitalia.

Results

The description of *Hygrocrates kovblyuki* sp. n., raises the total number of *Hygrocrates* species in Turkey to three, with a total number of 49 Turkish Dysderidae. To date, 25 Dysderinæ species, including the newly described species, have been recorded in Turkey. *Dysdera* is the most species-rich genus, with 20 species in Turkey (Bayram et al. 2012). According to the classification of Deeleman-Reinhold, Deeleman (1988), eight of their nine *Dysdera* species groups occur in Turkey, with the *asiatica* group being most diverse with six species recorded. The other genera of the subfamily, *Dysderocrates* Deeleman-Reinhold & Deeleman, 1988 and *Harpactocrates* Simon, 1914, are represented by only one species.
A review of the Genus Hygrocrates with a Description of a New Species from Turkey...

Figs. 8-16. Comparison of the three Turkish species. 8, 11, 14. H. deelemanus 9, 12, 15. H. lycaoniae 10, 13, 16. H. kovblyuki sp. n. Abbreviations: Ap, apophysis, Apb, apophysis, dps distalmost part of spermatheca pps proximalmost part of spermatheca E embolus

each: D. regina Deeleman-Reinhold, 1988 and H. troglophilus Brignoli, 1978. Although Rhodera Deeleman-Reinhold, 1989 (Crete and Greece) and Cryptoparachtes Dunin, 1992 (Azerbaijan and Georgia) occur in neighboring countries, they have not yet been found in Turkey. The genus Tedia Simon, 1882 was recently collected from the Eastern Mediterranean region of Turkey, but the specimens probably represent a new species which will be described in a subsequent paper.

Acknowledgements: This work was supported by the Russian Foundation for Basic Research (grants # 09-04-01365 and 11-04-01716). We would like to thank Kirill M. Mikhailov (Moscow) for providing the type specimens of H. caucasicus. The English of the final draft was kindly checked by David Penney (United Kingdom).

References

Received: 22.05.2012
Accepted: 17.04.2013